117 research outputs found

    Taxis Equations for Amoeboid Cells

    Full text link
    The classical macroscopic chemotaxis equations have previously been derived from an individual-based description of the tactic response of cells that use a "run-and-tumble" strategy in response to environmental cues. Here we derive macroscopic equations for the more complex type of behavioral response characteristic of crawling cells, which detect a signal, extract directional information from a scalar concentration field, and change their motile behavior accordingly. We present several models of increasing complexity for which the derivation of population-level equations is possible, and we show how experimentally-measured statistics can be obtained from the transport equation formalism. We also show that amoeboid cells that do not adapt to constant signals can still aggregate in steady gradients, but not in response to periodic waves. This is in contrast to the case of cells that use a "run-and-tumble" strategy, where adaptation is essential.Comment: 35 pages, submitted to the Journal of Mathematical Biolog

    The Role of Cytonemes and Diffusive Transport in the Establishment of Morphogen Gradients

    Full text link
    Spatial distributions of morphogens provide positional information in developing systems, but how the distributions are established and maintained remains an open problem. Transport by diffusion has been the traditional mechanism, but recent experimental work has shown that cells can also communicate by filopodia-like structures called cytonemes that make direct cell-to-cell contacts. Here we investigate the roles each may play individually in a complex tissue and how they can jointly establish a reliable spatial distribution of a morphogen.Comment: 36 pages, 16 figure

    Noise-induced Mixing and Multimodality in Reaction Networks

    Full text link
    We analyze a class of chemical reaction networks under mass-action kinetics and involving multiple time-scales, whose deterministic and stochastic models display qualitative differences. The networks are inspired by gene-regulatory networks, and consist of a slow-subnetwork, describing conversions among the different gene states, and fast-subnetworks, describing biochemical interactions involving the gene products. We show that the long-term dynamics of such networks can consist of a unique attractor at the deterministic level (unistability), while the long-term probability distribution at the stochastic level may display multiple maxima (multimodality). The dynamical differences stem from a novel phenomenon we call noise-induced mixing, whereby the probability distribution of the gene products is a linear combination of the probability distributions of the fast-subnetworks which are `mixed' by the slow-subnetworks. The results are applied in the context of systems biology, where noise-induced mixing is shown to play a biochemically important role, producing phenomena such as stochastic multimodality and oscillations

    Radial and spiral stream formation in Proteus mirabilis

    Get PDF
    The enteric bacterium Proteus mirabilis, which is a pathogen that forms biofilms in vivo, can swarm over hard surfaces and form concentric ring patterns in colonies. Colony formation involves two distinct cell types: swarmer cells that dominate near the surface and the leading edge, and swimmer cells that prefer a less viscous medium, but the mechanisms underlying pattern formation are not understood. New experimental investigations reported here show that swimmer cells in the center of the colony stream inward toward the inoculation site and in the process form many complex patterns, including radial and spiral streams, in addition to concentric rings. These new observations suggest that swimmers are motile and that indirect interactions between them are essential in the pattern formation. To explain these observations we develop a hybrid cell-based model that incorporates a chemotactic response of swimmers to a chemical they produce. The model predicts that formation of radial streams can be explained as the modulation of the local attractant concentration by the cells, and that the chirality of the spiral streams can be predicted by incorporating a swimming bias of the cells near the surface of the substrate. The spatial patterns generated from the model are in qualitative agreement with the experimental observations
    • …
    corecore